NIZAM COLLEGE DEPARTMENT OF CHEMISTRY

LESSON PLAN

FOR THE ACADEMIC YEAR 2018-2019 onwards

M. Sc. Chemistry (Second Year)

Spl: Pharmacoinformatics

Semester-III

Course/Paper - I
CH(CPI)301 T: Database Management, Sources and Scripting Languages

Unit: CPI - 09: Chemical Information Sources and Searches

Topics to be covered	No. of Hours required
Introduction to information sources	1
searching strategies, tactics for searches	2
Advantages and Limitations of computer searching	1
Keyword based general bibliographic searches, Chemical connectivity and structure searches (2D)	2
Chemical structure, property and shape based searches (3D), Searching for the synthesis (or) reactions of specific compounds or classes of compounds, Searching of chemical abstracts	2
Types of Publications: Journals, Technical reports, Patents, Conference Papers, Dissertations, Electronic Publications	2
Types of databases: Public databases - NCBI, RCSB, CSD, Expasy, Swiss-Prot and Paid databases - CAT'STN and SciFinder	2
Web-based cross platform solutions for Cheminformatics: BLAST, ClustalW, SAVES, ProSA	3
	15hrs

Unit: CPI - 10: Database Design and Management

Topics to be covered	No. of Hours required
Computers & it's components, Operating System (Windows & Linux)	1
Introduction to DBMS, Database concepts	2
Database models and ER diagrams	2
Normalization	1
Introduction to SQL, DDL, DML, DCL, and TCL;	2
Creation of databases, Searching database using SQL	1
Built-in-functions, String manipulation, improving query performance (where, 'Group By', having Clause)	1
cursors, stored procedures	1
Introduction to MySQL, configuring and running MySQL on Linux	2
Data Processing, Information systems and computing	1
Data presentation for computing, Distributed processing	1
	15hrs

Unit: CPI - 11: Data Sequencing and Mining

Topics to be covered	No. of Hours required
Introduction to Data Mining	2
working principles of Data Mining	2
Architecture form of data Mining	1
Difference between Data Mining and Machine learning techniques	2
Supervised and unsupervised learning methods and its application to QSAR	3
Data Visualization: Visualizing Data mining models, Decision Tree	2
Data warehousing: Data mining and analytic technology	2
Comparing different Models using visualization	1
	15hrs

Unit: CPI – 12 : Scripting Languages

Topics to be covered	No. of Hours required
Introduction to Shell scripting	1
Common Linux commands (Bash)	1
Basic shell Programming: addition, subtraction, loops, conditional-loops, un-conditional loops, Linux text editors (Vi)	1
Perl: Introduction, basics, sequences	2
Perl: uses, implementation issues, changes from other languages	2
advantages, and disadvantages	1
Strings: operations, support with Perl, advantages	2
accessing MySQL database using Perl, getting id, Sequence from a Database Object	2
matching a sequence in a Database Object, Subroutines	1
Introduction to Bio-Perl, Perl for Cheminformatics / Bioinformatics	2
	15hrs

Course/Paper - II

CH(CPI)302 T: Computational Chemistry, Molecular Modeling &Its Applications.

Unit: CPI – 13 : Computational Chemistry -I

Topics to be covered	No. of Hours required
Introduction to Molecular Modeling	1
Single molecule calculations, assemblies of molecules and reactions of molecules	2
Co-ordinate systems: Cartesian and Internal Co-ordinates, Z-matrix	1
Potential energy surface - Conformational search; Global minimum, Local minimum	2
Conformational analysis of ethane	1
Force field - Features of Molecular Mechanics	1
Bonded and Non-bonded interactions, Bond Stretching, Angle Bending	2
Torsional Terms (Improper Torsions, out of Plane Bending Motions, Cross Terms)	2
Non Bonded Interactions (Electrostatic Interactions, Van-der Waals interactions)	2
Hydrogen Bonding Interactions	1
	15hrs

Unit: CPI – 14 : Computational Chemistry -II

Topics to be covered	No. of Hours required
Force Field Equation in Energy minimization (Energy as function of r, θ , ω)	2
Introduction to Derivative Minimization Methods (First Order Minimization)	2
Types of energy minimization Methods; Steepest Descent, Conjugate Gradient	3
Conformational Search procedures - Geometry optimization procedures	2
Molecular Dynamics: Introduction, description of Molecular Dynamics	2
basic elements of Monte-Carlo method, differences between Molecular Dynamics and Monte-Carlo method	2
Qualitative exposure to Molecular Dynamics Simulations	2
	15hrs

 $\underbrace{\textbf{Unit:}}\ CPI-15: Drug\ Design\ Methods\ I\ - Ligand\ Based$

Topics to be covered	No. of Hours required
Lead Molecule, Structure Activity Relationship (SAR)	1
Quantitative Structure Activity Relationship (QSAR), Distinguish between SAR and QSAR	1
Physicochemical parameters: Electronic effects, Hydrophobicity,	1
Physicochemical parameters: Steric Factors Taft's Steric function, Molar Refractivity, Verloop Steric factor	1
Molecular Descriptor analysis: Craig plot, Topliss scheme	2
Bioisosteres - Hansch model, Free-Wilson model for QSAR equations	2
Regression analysis: Multi Linear Regression and Partial Least Square (terms: n, SD, r, r2, r2%, F)	2
Examples for linear and non-linear equations	2
3D QSAR: CoMFA and CoMSIA	2
Differences between 2D and 3D QSAR	1
	15hrs

Unit: CPI – 16 : Drug Design Methods II - Structure Based

Topics to be covered	No. of Hours required
Database similarity searches, Pair-wise alignment: Global sequence analysis (Needleman-Wunsch),	1
Local Sequence Alignment (Smith Waterman), Multiple Sequence Alignment	1
Homology Modeling: Query sequence, Template selection,	1
Alignment, Backbone Modeling, Loop Modeling, Side chain Modeling,	2
Model optimization, Energy minimization	2
Model Evaluation: Ramachandran Plot, Verify 3D, Errata and ProSA	2
Active site Identification - Docking	1
Docking Algorithms: Genetic Algorithm, Incremental construction	2
Molecular Interactions, Scoring functions	1
Virtual Screening: Ligand Based and Structure Based	1
De novo ligand design and its limitations	1
	15hrs

Course/Paper - III

CH(CPI)303 T: Elective-3A: Synthetic Reagents, Advanced NMR, Conformational Analysis and ORD

Unit: CPI – 17 : Synthetic Reagents-I

Topics to be covered	No. of Hours required
i) Protecting groups:	2
a) Protection of alcohols by ether, silyl ether and ester formation	
b) Protection of 1,2-diols by acetal, ketal and carbonate formation	1
c) Protection of amines by benzyloxycarbonyl, t-butyloxycarbonyl, fmoc and triphenyl methyl groups.	1
d) Protection of carbonyls by acetal, ketal and thiolacetal (Umpolung) groups	1
e) Protection of carboxylic acidsS by ester and ortho ester (OBO) formation.	1
ii) Organometallic Reagents:Preparation and application of the following in organic synthesis:1) Organo lithium 2) Organo copper reagents	1
3) Organo boranes in C-C bond formation	1
4) Organo silicon reagents: reactions involving β -carbocations and α carbanions, utility of trimethyl silyl halides, cyanides and triflates	2
iii)Carbonyl methylenation:	
a) Phosphorous ylide mediated olefination1) Witting reaction, 2) Horner-Wordsworth-Emmons reaction.	2
b) Titanium- Carbene mediated olefination 1) Tebbe reagent	1
2) Petasis reagent 3) Nysted reagent iv) Carbene insertions: Rh based carbene complexes, cyclopropanations.	1
v) C-H Activation: Introduction, Rh catalysed C-H activation.	1
	15hrs

Unit: CPI – 18 : Synthetic Reagents-II

Topics to be covered	No. of Hours required
i) Oxidations: a) Oxidation of active C-H functions: DDQ and SeO2.	2
b) Alkenes to diols: Prevost and Woodward oxidation	1
c) Alcohol to carbonyls: Cr(VI) oxidants (Jones reagent, PCC, PDC) IBX, DMP, CAN, TEMPO, TPAP, Swern oxidation	2
d) Oxidative cleavage of 1,2-diols: Periodic acid and Lead tetra acetate.	1
ii) Reductions	1
a) Catalytic hydrogenation: Homogenous (Wilkinsons's catalytic hydrogenation) and heterogeneous catalytic reduction.	2
b) Non-metallic reductions: Diimide reduction	1
c) Dissolving metal reductions: Birch reduction.	2
d) Nucleophilic metal hydrides: LiAlH ₄ , NaBH ₄ , Modifications LAH, SBH.	1
e) Electrophilic metal hydrides: BH3, AlH3 and DIBAL.	1
f) Use of tri-n-butyl tin hydride: Radical reductions	1
	15hrs

Unit: CPI – 19: ¹³C NMR and 2D NMR spectroscopy

Topics to be covered	No. of Hours required
i) Introduction, Types of ¹³ C NMR spectra (undecoupled, proton-decoupled and off-resonance decoupled (ORD) spectra).	2
¹³ C chemical shifts, factors affecting the chemical shifts, chemical shifts of organic compounds	2
Calculation of chemical shifts of alkanes, alkenes and alkynes.	1
Homonuclear (¹³ C, ¹³ C J) and heteronuclear (¹³ C, ¹ H J and ¹³ C, ² H J) coupling.	1
Applications of ¹³ C-NMR spectroscopy: Structure determination, stereochemistry, reaction mechanisms and dynamic processes in organic molecules.	2
¹³ CNMR spectral editing techniques:	1
principle and applications of APT, INEPT and DEPT methods.	1
ii) Principles of 2D NMR, Classification of 2D-experiments. Correlation spectroscopy (COSY) HOMO COSY (¹ H- ¹ H COSY), TOCSY	2
Hetero COSY (¹ H, ¹³ C COSY, HMQC), long range ¹ H, ¹³ C COSY (HMBC),	1
Homonuclear and Heteronuclear 2D-J-resolved spectroscopy,	1
NOESY and 2D-INADEQUATE experiments and their applications.	1
	15hrs

Unit: CPI – 20: Conformational analysis (Cyclic systems) & ORD

Topics to be covered	No. of Hours required
Study of conformations of cyclohexane, mono, di and tri substituted cyclohexanes	2
cyclohexanone (2-alkyl and 3-alkyl ketone effect), 2-halo-cyclohexanones, cycloheptane	2
Stereo chemistry of bicyclo[3,3,0]octanes, hydrindanes, decalins and perhydro-anthracenes.	2
Conformational structures of piperidine, N-Methyl-piperidine, tropane, tropine, pseudotropine, decahydroquinoline and quinolizidine.	3
Factors governing the reactivity of axial and equatorial substituents in cyclohexanes.	1
Stereochemistry of addition to the carbonyl group of a rigid cyclohexanone ring	1
Optical rotation, circular birefringence, circular dichroism Cotton effect.	1
Plain curves and anomalous curves.	1
Empirical and semi-empirical rules-The axial halo-ketone rule, the octant rule, Helicity rule, Exciton chirality method.	1
Application of the rules to the study of absolute configuration and organic molecules	1
	15hrs

Course\Paper-III:

CH(CPI)303 T:Elective 3B: Advanced Natural Products

Unit: CPI-21: Biosynthesis of natural products

Topics to be covered	No. of Hours required
Biosynthesis of secondary metabolites: Introduction, Difference between Laboratory synthesis and biosynthesis	2
Methods for determination of biosynthetic mechanism. Isolation and identification of Biosynthetic precursors, Feeding experiments	2
use of radioisotopes Measurement of incorporation – absolute incorporation, specific incorporation	2
Identification of the position of labels in labeled natural products by chemical degradation and spectral methods	2
Major biosynthetic pathways: 1) Acetate-Malonate pathway: Biosynthesis of aromatic compounds	2
2) Shikimic acid pathway; Biosynthesis of essential amino acids — phenylalanine, tyrosine and tryptophan, carboxylic acid derivatives, flavonoids and morphine alkaloids	3
3) Mevalonic acid pathway : Biosynthesis of terpenes – mono, sesqui, di, tri (β-amyrin) and carotenoids, steroids – cholesterol	2
	15hrs

Unit: CPI-22: Structure determination of natural products by chemical methods.

Topics to be covered	No. of Hours required
Determination of structure and stereochemistry of morphine	3
Determination of structure and stereochemistry of reserpine	3
Determination of structure and stereochemistry of abietic acid	3
Determination of structure and stereochemistry of cholesterol	3
Determination of structure and stereochemistry of rotenone	3
	15hrs

Unit: CPI-23: Structure determination and stereochemistry of natural products by spectral methods.

Topics to be covered	No. of Hours required
Spectroscopic techniques IR, UV	2
1Hnmr, 13Cnmr	2
COSY, HETEROCOSY, NOESY, 2D-INADEQUATE	2
MS in the structure elucidations of natural products, Examples, flavones, biflavones, flavanones, isoflavones, coumarins, quinolines, isoquinolines.	2
Study of the following solved problems: Mass, IR, 1H, 13C NMR,	3
HOMOCOSY, HECTOR, DEPT, 2D-INADEQUATE and NOE of Geraniol,	
INEPT of menthol, APT of apparicine	
Heteronuclear 2D-J resolved spectrum of stricticine	1

NOESY of buxaquamarine	1
HETEROCOSY of strictanol	1
2D-INADEQUATE of α-picoline and β-methyl tetrahydran furan	1
	15hrs

Unit: CPI-24: Total stereo selective synthesis of natural products.

Topics to be covered	No. of Hours required
Nicalou's synthesis of Dynemicin A	2
Corey's synthesis of prostaglandins (E2, F2α) and paeoriflorin	3
Sharpless synthesis of L-hexoses	2
Nicolaous synthesis of taxol	2
Danishefsky synthesis of indolizomycin	2
Takasago synthesis of menthol	2
Hoffmann-LaRoche synthesis of Biotin	2
	15hrs

Course\Paper-IV
CH(CPI)304 T:ELECTIVE 4A: Modern Organic Synthesis
Unit: CPI - 25 : Asymmetric Synthesis

Topics to be covered	No. of Hours required
Introduction : Brief revision of classification of stereo selective reactions	1
Prostereoisomerism : Topicity in molecules Homotopic, stereo-heterotopic	1
(enantiotopic and diastereotopic) groups and faces-symmetry criteria.	
Prochiral nomenclature : Pro chirality and Pro-R, Pro-S, Re and Si.	2
Conditions for stereo selectivity: Symmetry and transition state criteria, kinetic and thermodynamic control. Methods of inducing enantioselectivity.	
Analytical methods: %Enantiomeric excess and diastereomeric ratio.	2
Determination of enantiomeric excess: specific rotation, Chiral NMR;	
Chiral derivatizing agents, Chiral solvent, Chiral shift reagents and Chiral HPLC.	
Chiral Substrate controlled asymmetric synthesis: Nucleophilic	2
additions to chiral carbonyl compounds. 1, 2- asymmetric induction, Cram's rule and Felkin-Anh model.	
Chiral auxiliary controlled asymmetric synthesis: α-Alkylation of chiral	2
enolates, Evan's oxazolidinone, 1, 4-Asymmetric induction and Prelog's rule.	
Chiral reagent controlled asymmetric synthesis: Asymmetric reductions using BINAL-H. Asymmetric hydroboration using IPC2 BH and IPCBH2.	2
Chiral catalyst controlled asymmetric synthesis: Sharpless epoxidation. Asymmetric hydrogenations using chiral Wilkinson biphosphin catalyst.	2
Asymmetric aldol reaction: Diastereoselective aldol reaction (achiral enolate & achiral aldehydes) its explanation by Zimmerman-Traxel model.	1
	15hrs

Unit: CPI - 26 : Synthetic strategies

Topics to be covered	No. of Hours required
Introduction: Terminology, Target, synthon, synthetic equivalent, functional group inter-conversion (FGI), functional group addition. Criteria for selection of target. Linear and convergent synthesis.	2
Retrosynthetic analysis and synthesis involving chemoselectivity, regioselectivity, reversal of polarity and cyclizations.	2
Order of events: S-Salbutamol, Propoxycaine.	1
One group C-C and C-X disconnections: Introduction .One group C-C disconnections in alcohols and carbonyl compounds. One group C-X disconnections in Carbonyl compounds, alcohols, ethers and sulphides.	2
Two group C-C and C-X disconnections : Introduction, Two group C-X disconnections in 1,1-difunctionalised, 1,2-difunctionalised and 1,3-difunctionalised compounds.	2
Two group C-C disconnections: Diels-Alder reaction, 1,3-difunctionalised compounds, 1,5-difunctionalised compounds, Michael addition and Robinson annulation.	2
Control in carbonyl condensations: oxanamide and mevalonic acid.	1

Strategic bond : definition, guidelines for disconnection; disconnection of C-X bonds, disconnect to greatest simplification, using symmetry in disconnection, disconnection corresponding to known reliable reaction, high yielding steps and recognizable starting materials. Retrosynthesis of Retronecene, longifoline.	
	15hrs

Unit: CPI - 27 : New Synthetic reactions

Topics to be covered	No. of Hours required
Metal mediated C-C and C-X coupling reactions: Suzuki, Heck, Stille,	
Sonogishira cross coupling, Buchwald-Hartwig and Negishi-Kumada coupling reactions.	3
C=C Formation Reactions: Shapiro, Bamford-Stevens, McMurrey	
reactions, Julia-Lythgoe olefination and Peterson's stereoselective	3
olefination.	
Multicomponent Reactions: Ugi, Passerini, Biginelli, Bergman and	2
Mannich reactions.	2
Ring Formation Reactions: Pausan-Khand reaction, Nazerov cyclisation.	1
Click Chemistry: Click reaction, 1,3-dipolar cycloadditions.	1
Metathesis: Grubb's 1st and 2nd generation catalyst, Olefin cross coupling	
metathesis (OCM), Ring Closing Metathesis (RCM), Ring Opening	2
Metathesis (ROM), applications.	
Other important synthetic reactions: Baylis-Hilman reaction,	
Eschenmoser-Tanabe fragmentation, Mitsunobu reaction, Stork-enamine	3
reaction and Michael reactions.	
	15hrs

Unit: CPI - 28 : Chiral Drug

Topics to be covered	No. of Hours required
Introduction to chiral drugs. Three-point contact model	1
Eutomer, Distomer and eudesmic ratio. Pfeiffer's rule.	1
Synthesis and pharmacological activity of Menthol, S-Naproxen, S-Ibuprofen (anti inflamatory)	1
Synthesis and pharmacological activity of S-Timolol, oxazolidone, Captopril, Enalapril, Diltiazam (Calcium antagonist)	2
Synthesis and pharmacological activity of Indinavir sulphate (HIV-1-protease inhibitor)	2
Synthesis and pharmacological activity of Ethambutal (anti-tubercular). Cloxacillin, Cephalexin (Antibiotic)	2
Synthesis and pharmacological activity of Oxybutynine hydrochloride (Antispasmodic Agent), Dexormaplatin (Antitumour Agent)	2
Synthesis and pharmacological activity of indacrinone (Diuretic), Griseofulvin, (Antifungal)	2
Synthesis and pharmacological activity of Levocitrizine (Antihistamine) and Meteprolal (β1- blocker)	2
	15hrs

Course\Paper-IV

CH(CPI)304 T:ELECTIVE 4B: Intellectual Property Rights

Unit: CPI - 29: Introduction

Topics to be covered	No. of Hours required
Introduction to Legal Rights and obligations	2
Concept of Property	1
Kinds of Property	1
General concept and Significance of Intellectual Property (IP)	2
Intellectual Property Rights (IPR),	1
Intellectual property, Introduction to IPR	2
contents of IPR and their protection	1
Recent Developments, IP Organisations	2
Introduction to Patents	1
Trademarks, Copyrights, Trade secrets,	1
Industrial designs and Geographical indications	1
	15hrs

Unit: CPI - 30 : International Organizations & Treaties

Topics to be covered	No. of Hours required
Paris Convention for the Protection of Industrial Property	1
Berne Convention for the Protection of Literary and Artistic Works	2
Patent Cooperation Treaty (PCT) which facilitates obtaining of patents in several countries by filing a single application	2
World Trade Organization (WTO), Trade Related Aspects of Intellectual Property (TRIPS)	2
Madrid system for the international registration of marks	2
The Hague system for the international deposit of industrial designs	2
Budapest treaty on the international recognition of the deposit of microorganisms for the purpose of patent procedure	2
International convention for the protection of new varieties of plants	2
	15hrs

Unit: CPI - 31 : Patent Search

Topics to be covered	No. of Hours required
What is a patent search.	1
Who needs a patent search	1
Patent Search Types and Methodologies,	2
Novelty Searches, Validity Searches	2
Infringement Searches, State-of the-art searches	2
Searching in Patent Databases: Free search databases: USPTO, EPSPACE, WIPO, Free Patents Online, Fresh Patents and JSPTO	2
Paid search databases: Micropat, Delphion, DialogPro, Patent Optimiser,	2
Aureka and PatentCafe,	
Structure based search: STN search, SciFinder	1
	15hrs

Unit: CPI - 32 : IP Reports Generation

Topics to be covered	No. of Hours required
Novelty search reports	1
Infringement search reports	1
Prior-art search reports	1
Patent invalidation reports	1
Competitive search reports	1
Business analysis reports	1
Patent Filing and Drafting	2
Patent filing procedures	2
Indian patent act	1
patent drafting	2
PCT applications, provisional and complete specifications	2
	15hrs

LABORATORY COURSES

Course\Paper-V:

CH(CPI)351 P: Molecular Modeling Lab

No. of Hours Allotted: 15 weeks x 9 hrs

Topics to be covered	No. of Weeks required
Dos and Linux commands; Shell Scripting : if, if else, for, do while	1
Perl Scripting: if, if else, for, while; Perl scripting for accessing MySQL database objects using DDL, DML, DCL	1
Creating Database: Creation of tables and Insertion of rows using MySQL	1
Perl scripting for Sequence analysis: a. Translate DNA sequence into RNA sequence b. Finding common Ktup (k = 1, 2, 3) between two sequences c. Local and global alignment of two sequences (DNA/RNA/Protein)	2
d. Multiple sequence alignment	
Drawing and minimizing molecules in modeling software, calculating physicochemical parameters.	2
2D QSAR Studies (COX 1 and 2, DHFR inhibitors).	1
3D QSAR: Pharmacophore model generation and pharmacophore match searching in database.	2
Homology Modeling: Retrieving Query Sequence, Finding Template, Pair-wise alignment, 3D model generation, energy minimization and structure validation.	2
Molecular Docking of COX 1 and 2, DHFR inhibitors into respective receptors.	3
	15 Weeks

Course\Paper-VI:

CH(CPI)352 P: Synthesis, Isolation and Mixture separation of Organic Compounds

No. of Hours Allotted: 15 weeks x 9 hrs

1,00 01 220 012 1210 000	· 13 WCCKS A 7 III
Topics to be covered	No. of Weeks required
Synthesis of Drugs: Benzocaine (Anaesthetic)	1
Antipyrine (Antipyretic)	1
Clofibrate(Anti-lipidemic)	1
Sulphonamide (antibacterial)	1
2-phenyl-Indole, Quinoxalinone, Isoniazid (Anti-Tubercular)	1
Benzillic acid rearrangement, Beckmann rearrangement and stereo selective reduction of ethyl acetoacetate by bakers yeast.	2
2. Isolation of Herbal Drugs:	
1.Piperine from black Pepper 2. Caffeine from tea leaves	2
3. Cineole from Eucalyptus leaves	
3. Mixture Separation	
a) Solid - Solid - 3 mixtures	2
b) Solid - Liqutd – 3 mixtures	2
c) Liquid - Liquid – 3 mixtures	2
	15 Weeks

(Semester-IV)

Course/Paper - I

CH(CPI) 401 T: Pharmacokinetics

Unit: CPI - 33: Biopharmaceutics

Topics to be covered	No. of Hours required
Introduction to Biopharmaceutics, definition of pharmacokinetics	2
pharmacodynamics, ADME processes	1
Rate, Rate Constants and order of reactions- zero order kinetics, first order kinetics, mixed order kinetics	2
Routes of administration: Enteral (oral, sublingual, buccal, rectal) perenteral (intravenous, intramuscular and subcutaneous), topical (dermal, trans dermal, ophthalmic, intranasal), advantages and disadvantages.	2
Plasma drug concentration vs time profile: pharmacokinetic parameters (Peak plasma concentration, time of peak concentration, AUC), pharmacodynamic parameters (MEC, MSC, Therapeutic range, onset of action, onset of time, duration of action, intensity of action)	2
Dissolution: Definition and theories of drug dissolution, Diffusion layer model, Danckwert's model & interfacial barrier model.	3
Factors influencing dissolution, dissolution tests for tablets and capsules (basket apparatus, paddle apparatus, flow through cell apparatus).	1
In vitro - in vivo correlation of dissolution.	2
	15hrs

Unit: CPI-34: Drug Absorption and Distribution

Topics to be covered	No. of Hours required
Absorption: Structure of cell membrane	1
Mechanism of drug absorption- Passive diffusion, Pore-transport, facilitated diffusion	1
active transport, ionic or electrochemical diffusion,	1
ion-pair transport, endocytosis	1
Factors influencing drug absorption: Dosage form, pH (pH partition hypothesis) Lipophilicity, Gastric emptying	2
Bioavailability: Objectives of bioavailability studies,	1
absolute verses relative bioavailability	1
Plasma level- time studies (single dose and multiple dose)	1
Concept of steady state concentration.	1
Distribution: Volume of distribution	1
Apparent volume of drug distribution and its determination	1
Factors affecting drug distribution	1
Plasma protein binding	2
	15hrs

Unit: CPI-35: Drug Metabolism and Excretion

Topics to be covered	No. of Hours required
Definition of biotransformation, drug metabolizing organs, drug metabolizing enzyme. Chemical pathways of drug biotransformation- Phase-I reactions and Phase-II reactions.	2
Phase-I reactions: A) Oxidative reactions, Cytochrome-P450 Oxidation-reduction cycle i) Aromatic hydroxylation (Acetanilide),	1
ii) Aliphatic hydroxylation (Ibuprofen), iii) N-Dealkylation (Diazepam),	1
iv) Oxidative deamination (Amphetamine), v) N-Hydroxylation (Paracetamol), vi) S- oxidation (Phenothiazine).	1
B) Reductive reactions- i) Reduction of carbonyls (Chioral hydrate) ii) N-Compounds (Nitrazepam). c) Hydrolytic reactions (Asprin).	1
Phase-II reactions: (Real detoxication pathways). i) Conjugation with D-Glucoronic acid (Benzoic acid), ii) Conjugation with Sulfate moieties (Paracetamol), iii) Conjugation with α-Amino acids (Salicylic acid). iv) Acetylation (p-Amino Salicylic acid), v) Methylation (Histamine).	3
Factors affecting biotransformation of drugs i) physiochemical properties of drugs, ii) chemical factors, iii) biological factors, Bioactivation and tissue toxicity.	2
Excretion of drugs. Definition of excretion, Types of excretion- (Renal and non-renal excretion).	1
The process of Renal excretion of drugs-Glomerular filteration, Active tubular secretion and active or passive tubular reabsorption, concept of clearance, factors effecting renal excretion, nonrenal routes of excretion, biliary excertion, salivary excretion and pulmonary excretion.	3
	15hrs

Unit: CPI-36: Pharmacokinetic Models

Topics to be covered	No. of Hours required
Definition, classification of models(mammillary and caternary)	1
One Compartment open model (I.V bolous, IV infusion, Extravascular administration)	2
Two Compartment open model (I.V bolous, IV infusion, Extravascular administration)	2
Application of these models to determine the various pharmacokinetic parameters	3
Calculations and non- compartmental approaches to pharmaco kinetics	2
Non-linear pharmaco kinetics: causes of nonlinearity	2
Michaels-Menten kinetics- characteristics	2
basic kinetic parameters	1
	15hrs

Course/Paper-II

CH(CPI)402 T : Principles of Drug Discovery, Drug Targets and chemistry of Pharmacology **Unit:** CPI - 37: Principles of Drug Discovery and SAR Studies

Topics to be covered	No. of Hours required
Introduction to drug discovery. Folklore drugs, stages involved in drug discovery- disease, drug targets, bioassay	2
Discovery of a lead - screening of natural products and synthetic compound libraries.	1
Natural products as lead structures in drug discovery – Pharmacophore - structure pruning technique e.g. morphine	2
Discovery of lead structure from natural hormones and neurotransmitters	1
Principles of design of agonists (Salbutamol), antagonists (cimitidine) and enzyme inhibitors (captopril).	1
Drug discovery without lead – serendipity - Penicillin and Librium as examples. Principles of Prodrug design; Existing drugs as leads (me too drugs). Introduction to drug patents and Clinical trials.	2
SAR Introduction; 1. Binding role of hydroxy group, Amino group, aromatic ring, double bond, ketones and amides.	2
2. Variation of substituents- alkyl substituents, aromatic substituents, extension of structure, chain extension, ring expansion/contraction, ring variation, ring fusion.	2
3. Simplification of the structure, rigidification, conformational blockers, X-ray crystallographic studies. Ex: A case study of Oxaminquine (schistosomiasis), Sulpha drugs (antibacterial), and Benzodiazepines (Hypnotics).	2
	15hrs

Unit: CPI-38: General Principles of Pharmacology and drug Targets, drugs acting on ANS and CNS

Topics to be covered	No. of Hours required
Nature and sources of drugs - Routes of administration of drugs - Classification. Drug absorption - bioavailability - Drug distribution.	1
Biotransformation and excretion drugs - Biological half-life and its significance/toxicity - Mechanism of action including drug receptor - Interactions and factors influencing them - Dose response relationship.	1
Introduction to macromolecular targets- Enzymes, cell wall, Cell membrane, Genetic material (DNA/RNA) Ion Channels, and drug classification. Structural architecture of Human Cell structure and Bacterial Cell wall,	1
Pharmacology of Drugs Acting on ANS and CNS, Introduction, classification of ANS and CNS. Structure of neuron. definitions of Somatic and autonomic nervous systems	1
Importance of acetyl choline – Biosynthesis. pathway of Cholinergic signalling systems .Uptake process – choline esterase. Cholinergic agonist-Acetyl choline. Degeneration- alzhemer. carbachol- synthesis &activity. Choline Esterase inhibitors. phsostigmine.	1
Cholinergic agonist – Atropine. Local Anaesthetics. Architecture of Na+ion channel on nerve membrane. H and M gates. Synthesis and mode of	1

	15hrs
Dopa, Mode of action. Alzhemer Disease-loss of Neurons-Donepezil.	
Choline and Dopamine. Parkinsons Disease- Symptoms. Synthesis of Levo	1
Neurodegenerative disorders – classification – Importance of Acetyl	
(I.V. anasthetic) – Thiopentone; Synthesis and mode of action.	1
General Anesthetics: Classification - Inhalation anaesthetic- Haloethanes synthasis and mode of action.	1
Anti-epileptic Agents-Brief description about epilepsy – types of epilepsy-Phenytoin – synthesis and mode ofaction.	1
Hypnotics and Anxiolytics- Classification . Chlorpromazine – synthesis and mode of action as anti psychotic agent	1
Anti Depresants; imipramine – synthesis and mode of action.	1
stimulants – amphetamine.	
Ulcer agent Synthesi and Mode of action. CNS neurotransmitters. Classification of CNS stimulants, Analeptic – Nikethamide; Psycho motor	1
Adrenergic antagonist- Mode of action and synthesis of Doxazocin. Anti	
Methyl DOPA – synthesis and mode of action.	
Biosynthesis of Adrenalin and Nor adrenalin – $\alpha 1$ and $\alpha 2$ receptors importance of $\alpha 2$ and NE. Synthesis of NE and E. Adrenergic Stimulants -	1
activation and its Physiological effect.	1
Adrenergic Receptors - α /β 1 & 2 receptors - Occurrence- Effect of	1
action of procaine	

Unit - CPI-39: Drugs Acting on Cardio Vascular and Respiratory System

Topics to be covered	No. of Hours required
General considerations-Pharmacology of drugs used in the treatment of congestive heart failure	1
Anti-arrythmics - Classification with examples, Anti-hypertensives, ACE inhibitors (captopril), beta1-blockers (Propranolol)	2
Drugs acting on Ion channels - Ca ²⁺ , Na ⁺ and Cl ⁻ channels and their mode of action	1
Structural formulae of Tetracaine and synthesis and of Amlodipine, Nifedipine, Diltiazem, Tetracine and 4-Aminopyridine	2
α-Adrenoreceptor stimulant (Clonidine), α- Adrenoreceptor blocking agent (Prazocin), Anti-hyperlipedemic (Clofibrate).	2
Pharmacology of Drugs affecting Respiratory System: Drugs used in the treatment of disorders of Respiratory Function and Bronchial Asthma	2
Broncho dilators - i) β–adrenergic agents (Albuterol) ii) Phosphodiestarase inhibitors (Aminophylline)	1
Anticholinergic agents (Atropine), Corticosteroids (Beclomethasone)	1
Inhibitors of mediator release (Cromolyn Sodium), Anti-tussives (Codeine) and Expectorants (Guaifenesin)	1
Pharmacology of Drugs affecting Gastro intestinal System - H+/K+-ATPase inhibitors (omeprazole)	1
Pharmacology of purgatives/laxatives (Dulcolax), Anti-diarrhoeals (Lopramide)	1
	15hrs

Unit: CPI-40: Drugs acting on metabolic process, cell wall, genetic material and immune system

Topics to be covered	No. of Hours required
a)Drugs acting on metabolic process: Antifolates - Discovery and	_
mechanism of action of sulphonamides, Structure of sulfomethoxazole, and	3
dapsone. Diaminopyrimidines - trimethoprim, and drug synergism.	
b)Drugs acting on cell wall: β-Lactam antibiotics - mechanism of action of	
penicillins and cephalosporins. Resistance to pencillins, broad spectrum	3
penicillins - ampicillin and amoxicillin. β-Lactamase inhibitors - Structural	3
formulae and mode of action of clavulanic acid and sulbactum.	
Drugs acting on genetic material: Introduction, classification and	1
mechanism of action.	1
a)DNA-intercalating agents-Anti-cancer and Anti-malarial agents.	1
Structural formulae of Daunomycin, Amsacrine and Chloroquine.	1
b) DNA- Binding and nicking agents: Antiprotozoal drugs, Metronidazole,	
and Tinidazole.	2
c) DNA-Polymerase inhibitors: Antiviral agents - AZT.	
d)DNA-Topoisomerase inhibitors: Anti bacterial agents. Structural	1
formulae of Ciprofloxacin and Norfloxacin	1
e)Inhibitors of transcribing enzymes: Anti-TB and anti-leprosy agents,	1
structural formulae of Rifamycins.	1
f)Drugs interfering with translation process: Antibacterial drugs,	1
Structural formulae of Erythromycin, 5-Oxytetracycline and Streptomycin.	1
Drugs acting on immune system: Introduction to immune system.	
Immuno-supressing agent - structural formula of Cyclosporin.	2
Immunoenhancers-use of vaccines and structural formula of levamisol.	
	15hrs

Course/Paper - III

Course\CH(CPI)403 T: ELECTIVE 3A: Pharmaceutical Analysis

Unit: CPI - 41: Spectral Methods in Pharmaceutical Analysis

Topics to be covered	No. of Hours required
Ultraviolet and Visible Spectroscopy: Introduction, principle, instrumentation, calibration	1
UV spectra of some representative drug molecules: Steroid enones, Ephedrine [the benzoid chromophore], ketoprofen [extended benzene chromophore], Procaine [amino group auxochrome], Phenyleprine [hydroxyl group auxochrome].	1
Application of UV-Vis Spectrophotometry to Pharmaceutical quantitative Analysis: Assay of Frusemide in tablet, Assay of Penicillin by derivatization.	1
Assay of Drugs by i) Direct UV method ii) Suitable Chromogens and iii) Charge transfer Complexes and Difference spectrophotometry, Derivative Spectra	1
Applications of UV-Visible Spectrophotmetry in Pre-formulation and formulation	1
Infrared Spectroscopy - Introduction, principle, instrumentation, Sample preparation methods	1
Application of IR Spectrophotomety in Structure Elucidation, interpretation of IR spectra of Paracetamol, aspirin, dexamethasone and phenoxymethyl pencillin potassium.	1
Examples of IR Spectra of Drug molecules, IR Spectrophotometry as a fingerprint technique	1
Near IR analysis (NIRA): Introduction, Examples of NIRA application	1
Examples of NIRA application – determination of particle size in United states Pharmacopia grade Aspirin, determination of blend uniformity, determination of active ingredients in multi- component dosage forms, moisture determination	1
Nuclear Magnetic Resonance Spectroscopy – Introduction, principle, instrumentation, general application.	1
1H NMR : Application of NMR to Structure Confirmation in some drug molecules, 1H NMR spectral analysis of Benzocaine, Phenacetin, Clofibrate and phenylephrine	2
13C NMR: 13C NMR spectrum of Salbutamol sulphate, Two Dimensional NMR Spectra – Proton- proton correlation spectrum of Tranexamic acid, Application of NMR to uantitative analysis	2
	15hrs

Unit: CPI - 42: Chromatography in Pharmaceutical Analysis-I

Topics to be covered	No. of Hours required
Chromatography – Introduction to chromatography, principle – physical basis of chromatography – adsorption and partition coefficients, stationary and mobile phases, classification of chromatographic methods	1
Thin Layer Chromatography (TLC): principle, adsorbents, preparation of TLC plates, drying of plates, sample application – spotting, solvents for	1

development, choice of solvents	
Visualization and detection of spots – UV light, Iodine chamber etc.,	
preparative TLC, applications of TLC – qualitative identification tests, Limit	1
tests; HPTLC - Introduction to HPTLC, principle, advantages over TLC	
High performance TLC (HPTLC):, instrumentation, steps involved in	
HPTLC – sample preparation, selection of chromatographic layer, plates,	
prewashing, condition of plates, sample application, preconditioning, mobile	1
phases	
HPTLC – chromatographic development, detection of spots, scanning and	1
documentation, Applications of HPTLC – assay of rifampicin, isoniazide and	1
pyrazinamide	
High Performance Capillary Electrophoresis: Introduction to	
electrophoresis, electrokinetic phenomenon, Electro-Osmotic Flow (EOF),	1
migration of ionic and neutral species in CE	
CE – Instrumentation , types of electrophoresis – Zone and Capillary	
electrophoresis, stationary and mobile phases, electrodes, control of	1
separation – migration time, electrodispersion	
Applications of CE – Separation of Atenolol and related impurities based on	
charge, assay of NSAIDs by CE and separation of anions based on ionic	1
radius	
Micellar Electrokinetic Chromatography (MECC): introduction,	
principle, separation mechanism - combination of electrophoresis, electro-	1
osmosis and chromatography	
MECC – Partition – micellar phase and pseudo stationary phase, surfactants	
 micelle-separation of anionic, cationic and neutral micelles, detection 	1
electropherogram, application of MECC- determination of flavonoids	-
Gas Chromatography (GC): Introduction, principle, theoretical	
considerations-retention time, retention volume, plate theory – equilibrium	
plates, calculation og no. of theoretical plates, resolution, Rate theory – Van	
De Meter's equation – Eddy Diffusion, Longitudinal Diffusion, Mass	1
transfer; Instrumentation, stationary and mobile phases – carrier gas,	
detectors C.C. calactivity of liquid stationary phases. Kayat's indicas Ma Paymalda.	
GC: selectivity of liquid stationary phases – Kovat's indices, Mc Reynolds	1
Constants; Derivatization in GC; Applications of GC – External and Internal	1
standard methods	
Quantitative applicants of GC: determination of manufacturing residues –	
detection of pivalic acid in dipivefrin eye drops, determination of residual	1
solvents – purge trap GC, applications of GC in bio-analysis. HPLC –	
introduction and principle	
High Performance Liquid Chromatography (HPLC) - instrumentation,	
stationary and mobile phases, elution methods, detectors, structural factors	1
governing elution of drugs, qualitative analysis of drugs by HPLC	
Assay of hydrocortisone in cream, assays involving specialized techniques –	1
assay of adrenaline by anionic ion-pairing agent	1
	15hrs

Unit: CPI - 43: Chromatography in Pharmaceutical Analysis-II

Topics to be covered	No. of Hours required
Potentiometric Titrations: - Introduction, principle, instrumentation.	1
Assay of Aspirin, Assay of Iron(II) succinate in ferromynS tablets, Introduction to ISE	1
Determination of fluoride in tablets and solutions by Flouride Ion Selective Electrode. Fundamentals of radioactivity	1
Measurement of radioactivity, Radiopharmaceuticals - requirements, radiochemical methods	1
Isotope dilution analysis IDA, Radioimmuno, assay RIA-Thyroxin, and thyroid stimulating Hormone	1
Introduction to thermal methods, classification, application of drug phenacetin	1
Detection of polymorphisim and pseudopolymorphisim in pharmaceutical by DSC/DTA.	1
Introduction to electro-analytical techniques, classification	2
Polarography, theory, polarogram	2
applications of polarography in analysis of Antibiotics, Alkaloids	1
applications of polarography in analysis Trace metals and metal containing drugs	1
applications of polarography in analysis Blood serum and cancer diagnosis, insecticides,	1
applications of polarography in analysis Vitamins, Hormones.	1
	15hrs

Unit: CPI-44: Titrimetry, Chemical and Extraction methods in Pharmaceutical Analysis

Topics to be covered	No. of Hours required
Introduction - Qualitative analysis, quantitative analysis, classical methods of analysis, Types of chemical reactions and primary and secondary solutions.	1
Acid-base titrations, Terminology, indicator principle, direct acid-base titrations in the aqueous phase, Indirect titrations in aqueous phase, estimation of alcohols and hydroxyl values by reaction with acetic anhydride.	1
Non-aqueous titrations -Theory, types of non-aqueous solvents, titrations of weak acids, Analysis of phenylephrine using perchloric acid.	1
Argentimetric Titrations – Principle, procedure for assays of Sodium chloride, potassium chloride, thiamine hydrochloride and carbromal.	1
Complexometric Titrations – Principle, types of complexometric titrations, metallochromes used, criteria of complexation and detection, effect of pH on complexation, estimation of metal ions, stability of metal complexes.	1
Redox Titrations - principle, types of redox titrations, assays of ferrous salts, hydrogen peroxide, sodium perborate and benzoyl peroxide by titration with KMnO ₄ .	1
Iodometric Titrations – principle, Assay of phenolglycerol injection.	1
Ion-pair Titrations - titrations using indicator dyes, titrations using iodide as a lipophilic anion	1
Diazotization Titrations – principle, assay of sulphanilamide.	2
Karl-Fischer Titrations - principle and procedure.	1
Introduction to extraction methods.	1

modified silica gels.	15hrs
in Solid phase extraction – (i) Lipophilic silica gels (ii) Polar surfaced	1
Solid phase extraction – Introduction, methodology, types of adsorbents used	
Partition between organic solvents and ion pair extraction.	1
their ionized and un-ionized forms.	
Solvent Extraction methods - extraction of organic bases and acids utilizing	1
suspensions and solutions (iii) creams and ointments.	1
Commonly used excipients in formulations – (i) tablets and capsules (ii)	

Course/Paper - III

Course\CH(CPI)403 T: ELECTIVE 3B: Bioorganic Chemistry

Unit: CPI-45: Carbohydrates

Topics to be covered	No. of Hours required
Introduction to the importance of Carbohydrates.	2
Types of naturally occurring sugars.	1
Sonogishira cross coupling, Buchwald-Hartwig and Negishi-Kumada coupling reactions	1
C=C Formation Reactions: Importance of double bonded compounds; Introduction to C=C Formation Reactions	1
Shapiro, Bamford-Stevens andMcMurrey reactions	1
Julia-Lythgoe olefination and Peterson's stereoselective olefination	1
Multicomponent Reactions: Importance of Multi-component reactions; Ugi and Passerini reactions	1
Biginelli, Hantzsch and Mannich reactions	1
Ring Formation Reactions: Pausan-Khand reaction, Bergman cyclisation, Nazerov cyclisation	1
Click Chemistry: Overview of Click Reactions; Criteria for Click reaction	1
Sharpless azides cycloadditions	1
Metathesis: Grubb's 1st and 2nd generation catalyst; Olefin cross coupling metathesis(OCM), ring closing metathesis(RCM), ring opening metathesis(ROM), applications	1
Other important synthetic reactions: Baylis-Hilman reaction and Eschenmoser-Tanabe fragmentation	1
Mitsunobu reaction, Stork-enamine reaction and Michael reactions	1
	15hrs

Unit: CPI-46: Nucleic acids and Lipids

Topics to be covered	No. of Hours required
Nucleic acids: Retro synthetic analysis of nucleic acids	1
Nucleotides, Nucleotide bases and Sugars	2
Structure and synthesis of nucleosides and nucleotides	2
Primary, secondary and tertiary structure of DNA. Types of mRNA, tRNA and rRNA	2
Replication, transcription and translation. Genetic code. Protein biosynthesis. DNA finger printing	2
Lipids: Introduction and classification of lipids. Stereochemical notation in lipids	2
Chemical synthesis and biosynthesis of phospholipids and glycolipids	2
Properties of lipid aggregates, micelles, bilayers, liposomes and biological membranes	2
	15hrs

Unit: CPI-47: Proteins and Enzymes

Topics to be covered	No. of Hours required
Proteins: Introduction. Peptide bond, classification and nomenclature of peptides	1
Amino acid sequence of polypeptides and proteins: terminal residue analysis and partial hydrolysis	1
Peptide synthesis by solution phase and solid phase synthesis methods	1
Proteins - Biological importance and classification - Primary, secondary and tertiary structure of proteins	2
Enzymes: Definition. Classification based on mode of action	2
Mechanism of enzyme catalysis - Lock and Key, Induced- Fit and three point contact models	3
Enzyme selectivity –chemo, regio, diastereo and enantio selectivity—illustration with suitable examples	2
Factors affecting enzyme catalysis	1
Enzyme inhibition - reversible and irreversible inhibition	1
Enzymes in organic synthesis. Immobilised enzymes	1
	15hrs

Unit: CPI-48: Coenzymes and Vitamins

Topics to be covered	No. of Hours
Coenzymes: Introduction, Co-factors - cosubstrates - prosthetic groups	1
Classification-Vitamin derived coenzymes and metabolite coenzymes	1
Structure and biological functions of coenzyme A, thiamine pyrophosphate (TPP), pyridoxal phosphate (PLP)	1
oxidized and reduced forms of i) nicotinamide adenosine dinucleotide / their phosphates (NAD), NADH, NADP+ NADPH)	1
ii) Flavin adenine nucleotide FAD, FADH2 and iii) Flavin mononucleotide (FMN, FMNH2) lipoic acid, biotin, tetrahydrofolate and ubiquinone.	2
Adenosine triphosphate (ATP) and adenosine diphosphate (ADP), S-adenosyl methionine (SAM) and uridine diphospho sugars (UDP-sugars) Mechanism of reactions catalyzed by the above coenzymes	2
Vitamins: Introduction, classification and biological importance of vitamins	1
Structure determination and synthesis of vitamins A, B1, and B2	3
Synthesis of vitamins - B6, C, E and K. Structure of vitamin B12	3
	15hrs

Course/Paper - IV

Course\CH(CPI)404 T: ELECTIVE 4A: Advanced Heterocyclic Chemistry

Unit: CPI - 49: Non aromatic heterocyclics & Aromaticity

Topics to be covered	No. of Hours required
Different types of strains, interactions and conformational aspects of non-aromatic heterocycles	1
Synthesis, reactivity and importance of Azirines, Aziridines	2
Synthesis, reactivity and importance of Oxiranes, Oxaziridines	2
Synthesis, reactivity and importance of Diazirenes, Diaziridines	2
Synthesis, reactivity and importance of Thiiranes, Azetidines	2
Synthesis, reactivity and importance of Oxetanes, thietanes	2
Aromaticity introduction, Aromatic and anti aromatic compounds, Criteria for aromaticity	1
Huckel's 4n+2 electron rule for benzene and non benzenoid aromatic compounds	1
Cyclopropenium ion, cyclopentadienyl ion, cycloheptatrienium ion, azulene and annulenes	2
	15hrs

Unit: CPI - 50: Five and six membered heterocyclics with two hetero atoms

Topics to be covered	No. of Hours required
Synthesis, reactivity, aromatic character & importance: Pyrazole, Imidazole	3
Synthesis, reactivity, aromatic character & importance: Oxazole, Isoxazole	3
Synthesis, reactivity, aromatic character & importance: Thiazole, Isothiazole	3
Synthesis, reactivity, aromatic character & importance: Pyridazine	1
Synthesis, reactivity, aromatic character & importance: Pyrimidine	1
Synthesis, reactivity, aromatic character & importance: Pyrazine	1
Synthesis, reactivity, aromatic character & importance: Oxazine, thiazine	1
Synthesis, reactivity, aromatic character & importance: benzimidazole, benzoxazole and benzthiazole	2
	15hrs

Unit: CPI - 51: Heterocyclics with more than two hetero atoms

Topics to be covered	No. of Hours required
Synthesis, reactivity, aromatic character and importance of the following Heterocycles: 1,2,3- triazoies, 1,2,4-triazoles	2
Synthesis, reactivity, aromatic character and importance of Tetrazoles	1
Synthesis, reactivity, aromatic character and importance of 1,2,4-oxadiazole, 1,3,4-oxadiazole, 1,2,5- oxadiazole	2
Synthesis, reactivity, aromatic character and importance of 1,2,3-thiadiazoles, 1,3,4-thiadiazoles, 1,2,5-thiadiazoles	2
Synthesis, reactivity, aromatic character and importance of 1,2,3-triazine, 1,2,4- triazine, 1,3,5- triazine	2

Synthesis, reactivity, aromatic character and importance of tetrazines	2
Synthesis and importance of purines and pteridines	2
Syntheis of Caffeine, theobromine and theophylline	2
	15hrs

Unit: CPI - 52: Larger ring and other hetero cyclics

Topics to be covered	No. of Hours required
Introduction and nomenclature to heterocyclic compounds	1
AZEPINES: Synthesis, structure, stability and reactivity of Azepines	1
OXEPINES: Synthesis, structure, stability and reactivity of Oxepines	1
THIEPINES: Synthesis, structure, stability and reactivity of Thiepines.	1
DIAZEPINES: Synthesis of Diazepines, Rearrangement of 1,2-Diazepines	1
Synthesis and Reactivity of Benzoazepines.	1
Synthesis and Reactivity of Benzodiazepines	1
Synthesis and Reactivity of Benzooxepines	1
Synthesis and Reactivity of Benzothiepines	1
Synthesis and Reactivity of Azocines	1
Synthesis and Reactivity of Azonines	1
Synthesis and Reactivity of Selenophenes	1
Synthesis and Reactivity of Tellerophenes	1
Synthesis and Reactivity of Phospholes	1
Synthesis and Reactivity of Boroles	1
	15hrs

Course/Paper - IV

Course\CH(CPI)404 T: ELECTIVE 4B: Green chemistry and Organic materials

Unit: CPI - 53: Principles of Green chemistry

Topics to be covered	No. of Hours required
Green chemistry : Introduction, Designing a Green Synthesis using these principles	1
Prevention of Waste/by-products; maximum incorporation of the starting materials used in the synthesis into the final products (Atom Economy)	2
prevention/minimization of hazardous/toxic products; designing safer chemicals	2
selection of appropriate auxiliary substances - green solvents, ionic liquids and solvent-free synthesis	2
energy requirements for reactions - use of microwaves, ultrasonic energy in organic synthesis	2
prevention of unnecessary derivatization – careful use of protecting groups	1
use of catalytic reagents in preference to stoichiometric reagents	1
designing of biodegradable products; prevention of chemical accidents	2
strengthening/development of analytical techniques to prevent and minimize the generation of hazardous substances in chemical processes	2
	15hrs

Unit: CPI - 54: Green Synthesis

Topics to be covered	No. of Hours required
i) Microwave Assisted Organic Synthesis (MAOS): introduction, benefits and limitations	1
a) Microwave assisted reactions in organic solvents: Esterification, Fries rearrangement, Claisen rearrangement and Diels- Alder reaction	2
b)Microwave assisted Solvent-free reactions: Deacetylation, saponification of esters, alkylation of reactive methylene compounds and synthesis of nitriles from aldehydes	2
ii)Ultrasound Assisted Organic Synthesis: introduction, applications of ultrasound-Cannizaro reaction, Reformatsky reaction and Strecker synthesis	2
iii)Organic Synthesis in Green Solvents: introduction	1
a) Aqueous Phase Reactions: Diels-Alder Reaction, Heck reaction, Hoffmann elimination, Claisen-Schmidt condensation hydrolysis and diydroxylation reactions	2
b)Organic Synthesis using Ionic liquids: Introduction, applications-Beckmann rearrangement Suzuki Cross-Coupling Reaction and Diels- Alder reaction	2
iv) Green Catalysts in organic synthesis: introduction a) Phase Transfer Catalysts in Organic Synthesis: Introduction, Williamson ether synthesis and Wittig reaction	2
b) Biocatalysts in Organic Synthesis: Biochemical (microbial) oxidations and reductions	1
	15hrs

Unit: CPI - 55: Organic nanomaterials

Topics to be covered	No. of Hours required
Introduction: The 'top-down' approach, the 'bottom-up' approach and	1
Nanomanipulation	1
Molecular Devices: Photochemical devices, Liquid crystals, Molecular wires,	2
Rectifiers, Molecular switches and Molecular Muscles	2
New Carbon family: Types of Fullerenes, Types of Carbon nanotubes (Zig-	2
Zag, Armchair and Chiral), Graphenes	2
Growth, Chemical Synthesis and optoelectronic properties of Fullerenes,	
CNTs (Zig Zag, Armchair and Chiral), singlewalled CNTs (SWCNTs) and	3
multi walled MWCNTs)and Graphenes	
Structures of aromatics belts, nano car and molecular machines	2
Optoelectronic molecules: OLEDs, Organic Solar Cells (Basic OLED	2
mechanism and structures)	3
Natural Benz heterazoles and their synthetic modifications as optoelectronic	2
molecules	2
	15hrs

Unit: CPI - 56: Supramolecular chemistry

Topics to be covered	No. of Hours required
Introduction : Supramolecular interactions (ion-ion, ion-dipole, H-bonding, cation- π , anion- π , π - π and Van der Walls interactions),Ionophore and molecular receptors	3
Host-Guest Chemistry: Lock and key anology, Structures and applications of Cryptands, Spherands, Calixerenes, Cyclodextrins, Cyclophanes, Carcerands and hemicarcirands	4
Self-assembly : Ladder, polygons, helices, rotaxanes, catanenes, Molecular necklace, dendrimers, self-assembly capsules their synthesis, properties and applications	4
Enantioselective molecular recognition: Cyclodextrins, Crown ethers with chiral frame work, Chiral receptor from Kemp's triacid. Chiral receptors for tartaric acid	4
	15hrs

SEMESTER -IV PRACTICALS

Course\Paper-V: CPI – 451P: Quantitative Analysis of Pharmaceuticals

No. of Hours Allotted: 15 weeks x 9 hrs

Topics to be covered	No. of Hours
	required
Assay of pharmaceuticals - Redox titrations	
Assay of analgin in tablets by iodometry	
Assay of ascorbic acid in raw material by iodometry	2
Assay of ascorbic acid in tablets by cerimetry	
Determination of hydrogen peroxide in medicament by Permanganometry	
Assay of pharmaceuticals - Complexometric titrations	
Assay of Calcium in Calcium gluconate	
Assay Zinc in Bacitracin zinc	
Assay of pharmaceuticals - Non-aqueous titrations:	2
Assay of diphenylhydramine hydrochloride in tablets	
Assay of ephedrine hydrochloride in capsules	
Assay of Ibuprofen in tablets	
Assay of pharmaceuticals – Potentiometry/Conductometric	
Potentiometric estimation of Sulphanilamide	
Potentiometric estimation of Atropine	2
Conductometric estimation of analysis Amidazophen (aminophenazone)	
Conductometric estimation of analysis Asprin	
Assay of pharmaceuticals - UV-Visible Spectrophotometry	
Assay of Riboflavin in tablets	
Assay of Diazepam in tablets	1
Assay of Nimuselide in nimuselide tablets	
Assay of pharmaceuticals – by other methods	
Dissolution profile of paracetamol & ampicillin	
Determination of Sodium and potassium ions in pharmaceuticals by	2
flamephotometry	
Determination of Quinine sulphate & Riboflavin by florimetry.	
1) Identification of unknown organic compounds by interpretation of IR, UV,	
1H -NMR, 13C-NMR and mass spectral data	_
Asprin, p-Chloroacetophenone, clofibrate, Ibuprofen, Phenylacetic acid, p-	3
MethylBenzoylchloride, L-Dopa, Benzocaine	
2) Thin layer chromatography: Determination of purity of a given sample,	
monitoring the progress of chemical reactions, identification of unknown	1
organic compounds by comparing the Rf values of known standards.	1
3. Separation by column chromatography: Separation of a mixture of <i>ortho</i>	
and <i>para</i> nitroanilines using silicagel as adsorbant and chloroform as the	2
eluent. The column chromatography should be monitored by TLC.	2
orden. The column emoniatography should be mointored by The.	15 weeks
	13 WEERS

Course\Paper-VI: CPI - 452P: PROJECTWORK No. of Hours Allotted: 15 weeks x 9 hrs