Code No. 23J140/NC/Chd

Nizam College (Autonomous) Faculty of Science

B.SC. I- Semester Examinations, January - 2023

Computer Hardware: Paper – I (Digital Circuits Combination Logic)

Time: 3 Hours

Max. Marks: 80

Section - A

I. Answer any EIGHT of the following questions.

 $[8 \times 4 = 32]$

- 1. Describe Binary Number System.
- 2. Convert 723₁₀ to Hexadecimal number.
- 3. What is Gray Code?
- 4. What are universal gates?
- 5. State and explain Norton's Theorem.
- 6. What is product of Sums method?
- 7. What are Data processing circuits?
- 8. Differentiate between Full Adder and Half Adder
- 9. Disuse different types of memories.
- 10. What is T-Flip-Flop?
- 11. Write about J-K Flip Flop.
- 12. Explain about Asynchronous Counter.

Section - B

II. Answer the following questions using internal choice.

 $[4 \times 12 = 48]$

13. (a) State and prove maximum power transfer theorem and explain its applications.

OR

- (b) Write a short note on Resistors and colour coding.
- 14. (a) Simplify the given Boolean function with karnaugh map $Y=\sum (0,1,2,3,4,5,8,9,10,11,12)$.

[OR]

- (b) Explain the working of a priority encoder with a diagram.
- 15. (a) What is ROM and RAM? Write about applications of RAM.

[OR]

- (b) Illustrate about 1's Complement and 2's Complement Arithmetic.
- 16. (a) Explain the operation of a synchronous counter.

[OR]

(b) What is race around condition? How it will be solved using J-K masters lave J-K Flip Flop.

Code No. 23M140/NC/Chd

Nizam College (Autonomous) Faculty of Science

B.SC. I- Semester Examinations, May - 2023

Computer Hardware : Paper – 1 (Digital Circuits Combination Logic)

Time: 3 Hours

Section - A

Max. Marks: 80

Answer any EIGHT of the following questions.

 $[8 \times 4 = 32]$

- With the help of neat diagram explain the super position theorem?
- What about ASCII and Gray code.?
- 3. Explain about the colour coding method for measuring the resistance of a Resistor.
- 4. Write about Capacitors and Inductors.
- 5. Describe about Sum of products method.
- Write about Pairs, quads and octets.
- 7. Explain the operation of Half Adder.
- Write the applications of RAM.
- 9. Write about applications of Inductors.
- 10. Explain the working of D-Flip-Flop.
- 11. Write about Race around condition. -
- 12. Describe about Error detecting and Error-correcting codes.

Section - B

[] Answer the following questions using internal choice.

 $-[4 \times 12 = 48]$

13. (a) State and prove maximum power transfer theorem.

- (b) Explain Hexa to Binary, Binary to Decimal conversion method with example.
- 14. (a) Describe briefly about Data Processing Circuits.

[OR]

- (b) Simplify the following with karnaugh map method $Y=\sum (3,4,5,7,9,13,14,15)$.
- 15. (a) Explain about Binary Adder/Subtractor.

[OR]

- (b) Describe about Programming the ROM with example.
- 16. (a) With a neet diagram explain the operation of shift resistor.

(b) Explain about J-K Flip Flop and Master slave J-K Flip Flop.

Nizam College (Autonomous)

Faculty of Science

B.SC. I- Semester Examinations, December - 2023

Computer Hardware : Paper – 1 (Digital Circuits Combination Logic)

me: 3 Hours

Max. Marks: 80

Section - A

Answer any EIGHT of the following questions.

 $[8 \times 4 = 32]$

- 1. State and explain Kirchoff's Laws.
- 2. Explain the colour coding in Capacitors and Inductors.
- 3. Convert give binary number [10110111] (2) decimal and Hexadecimal.
- 4. Using NAND gates alone construct AND, OR, NOT gates.
- 5. Explain 5 in put Exclusive-OR gate. What is its significance?
- 6. Explain with logic circuit of Encoder.
- 7. With Logic circuit explain Half Adder.
- 8. Add {11110110} + {11101101} and, Subtract {11000111} from {11111010}.
- 9. Write a note on semiconductor memory devices.
- 10. Distinguish between synchronous and asynchronous counters. Which is faster?
- 11. How many Flip-flops are required for (i) Mod-8 counter and (ii) Mod-4 counter.
- 12. Mention few Applications of Counters.

<u>Section – B</u>

Answer the following questions.

 $[4 \times 12 = 48]$

13. (a) State and prove Super position Theorem.

[OR]

- (b) State and Prove Maximum power transfer Theorem.
- 14. (a) Simplify the Boolean functions, using four variable Karnaugh map $F(A,B,C,D) = \sum (1,2,4,5,7,9,11,14,15)$.

[OR]

- (b) Explain with logic circuit the working of 4 to 1MUX and 1 to 4 Demultiplexer.
- 15. (a) Explain 2's compliment method. Explain Adder and, Subtractor circuits.

OR

- (b) What is ROM and Explain the programming of ROM.
- 16. (a) Explain with logic circuit J-K flip flop and the D-type flip-flop with truth tables.

[OR]

(b) Explain the working of four bit binary counter with circuit diagram.

NIZAM COLLEGE (AUTONOMOUS) **FACULTY OF SCIENCE** B.Sc., II - SEMESTER EXAMINATIONS, MAY 2023 COMPUTER HARDWARE – PAPER - 2

(DIGITAL DESIGN)

TIME: 3 HOURS

MAX. MARKS: 80

SECTION - A

Answer any EIGHT of the following questions.

 $[8 \times 4 = 32]$

- 1. Explain TTL Integrated circuit design for any one gate.
- 2. Distinguish between TTL and CMOS logic families.
- 3. Mention special characteristics of Digital Integrated circuits.
- 4. What are excitation Tables? Explain.
- 5. Design J.K. Flip Flop and Explain its Truth table.
- 6. What is meant by state reduction and Assignment.
- 7. Discuss binary subtractor circuit with an examples.
- 8. Write a note on semiconductor memories.
- 9. Explain briefly about ASM chart.
- 10. Explain block diagram of an op-Amplifier.
- 11. Define Differential gain and common mode gain.
- 12. Mention few applications of op-amplifiers.

SECTION - B

Answer the following questions using internal choice.

 $[4 \times 12 = 48]$

13. (a) Construct NOR gate using TTL Logic family and explain.

- (b) Construct NAND gate using CMOS logic family and explain its working.
- 14. (a) Design and explain edge triggered D-Flip Flop and J-K Flip Flop.

[OR]

- (b) What is modulus of a counter? Design mod-7 counter and explain its working.
- 15. (a) Explain the constructions of 4 bit Encoder and explain its working.

- (b) Design 8 to 1 multiplexer. Draw the circuit diagram and explain its working.
- 16. (a) Draw the circuit diagram of Non-Inverting op-amp and obtain an expression for its gain.

[OR]

(b) Draw R-2R ladder circuit and explain the digital to analog conversion.

Nizam College (Autonomous)

Faculty of Science

B.SC. III- Semester Examinations, January - 2023

Computer Hardware: SEC-2

Time: 2 Hours

Max. Marks: 40

Section - A

I. Answer any FOUR of the following questions.

 $[4 \times 4 = 16]$

- 1. Write about Characteristics of IoT.
- 2. Draw the Physical Design of IoT and Specify it.
- 3. Discuss about IoT Applications
- 4. What is SDN Explain?
- 5. Write about SNMP Limitations.
- 6. What is Python and its Importance in IoT?
- 7. What is IoT Platform design?
- 8. Write about Network operator Requirements.

Section - B

 $[3 \times 8 = 24]$

II. Answer the following questions using internal choice

9. (a) Explain briefly about Physical and Logical design of IoT.

[OR]

- (b) Write about IoT Enabling technologies and Deployment Template.
- (a) Describe about Software defined networking SDN.

[OR]

- (b) Explain about Network Function Virtualization.
- (a) Describe the Components of SNMP with Example.

[OR]

(b) Discuss Home Automation using IoT.

Nizam College (Autonomous) Faculty of Science

B.SC. III- Semester Examinations, May - 2023

Computer Hardware: Paper - 3

(Microprocessor Architechere Programming and Applications with 8085)

Time: 3 Hours

Max. Marks: 80

Section - A

I. Answer any EIGHT of the following questions.

 $[8 \times 4 = 32]$

- 1. What is ALU? How it operates in 8085 up?
- 2. Describe the branch instructions of 8085 microprocessor.
- 3. Describe the flag registers.
- 4. Explain different stack instructions.
- 5. Explain Logical Group of Instructions.
- 6. Write about conditional call and return.
- 7. Describe the action of D/A converter.
- 8. How to write a program using assembler to find the product of two numbers.
- 9. Write short notes on 8086 microprocessor.
- 10. Explain the programmable DMA controller with INTEL 8257.
- 11. Explain the Data and Address Bus in 8085 up.
- 12. Write short notes on seven segment display.

Section-B

II. Answer the following questions using internal choice.

 $[4 \times 12 = 48]$

13. (a) What are the basic operations performed by the microprocessor? Explain the bus structure of 8085 microprocessor with necessary diagram.

[OR]

- (b) Explain the pin diagram of 8085 microprocessor.
- 14. (a) Discuss about each group of instructions set of INTEL 8085 microprocessor with examples.

IORI

- (b) Explain the seven segment LED display, interface to PPI8255.
- 15. (a) What are different interrupts of 8085? Give their priorities.

[OR]

- (b) Draw the block diagram of 8259 PIC and explain in-detail.
- 16. (a) Draw the block diagram of 8255 and explain the working of each block. What is Control word?

[OR]

(b) Explain the construction and working of A/D converter.

Code No. 23D/340/NC/Chd

Nizam College (Autonomous) Faculty of Science

B.SC. III- Semester Examinations, December - 2023

Computer Hardware: Paper - 3

(Microprocessor Architecture Programming and Applications with 8085)

Time: 3 Hours

Section - A

I. Answer any EIGHT of the following questions.

 $[8 \times 4 = 32]$

Max. Marks: 80

- 1. What is ALU? Explain.
- 2. What are the general purpose registers of 8085 microprocessor.
- 3. Explain memory interfacing in the 8085 Microprocessor.
- 4. Explain any four branching operations of 8085 Microprocessor
- 5. What is conditional call give any four example.
- 6. Explain the BCD arthematics of 8085 Microprocessors.
- 7. What are the restart as software instructions of 8085 Microprocessors.
- 8. Explain software development system.
- 9. Write an assembly language program to add two 8 bit numbers.
- 10. What are the programmable peripherals?
- 11. Write a short note on DMA interface initialization.
- 12. Explain the 8255 programmable peripheral interface.

Section-B

II. Answer the following questions.

 $[4 \times 12 = 48]$

13. (a) Explain the architecture of 8085 microprocessor with a neat block diagram.

[OR]

- (b) Describe interfacing memory mapped input / output of 8085 Microprocessors.
- 14. (a) Explain 16-bit data transfer and mathematical instructions of 8085 Microprocessors.

[OR]

- (b) Explain Interfacing of 8085 Microprocessors with BCD-Seven Segment LED.
- 15. (a) Describe the 8259 programmable interrupt controller.

- (b) Describe software development system and assemblers.
- 16. (a) Explain the introduction of 8086 Microprocessors.

(b) Discuss the interrupt structure of 8085 microprocessor. What are RIM, SIM Instructions.

CODE NO. 23M/4S40/NC/CHD-SEC

NIZAM COLLEGE (AUTONOMOUS) FACULTY OF SCIENCE B.SC. IV- SEMESTER EXAMINATIONS, MAY – 2023 COMPUTER HARDWARE, SEC.

COMPUTER HARDWARE : SEC - IV (PROGRAMMING INTERNET OF THINGS (IOT)

TIME: 2 HOURS

MAX. MARKS: 40

SECTION - A

I. Answer any FOUR of the following questions.

 $[4 \times 4 = 16]$

- 1. Define IoT and Describe its Components
- 2. What is the importance of Python in IoT
- 3. 3 Explain the needs of Tuple and Type conversion
- 4. Write about Push and Pull Communication Models.
- 5. Define Packages
- 6. Write about features of NODE MCU ESP32
- 7. What are the challenges to widespread use of IoT
- 8. Write a simple program on Raspberry Pi with Python

SECTION - B

II. Answer the following questions using internal choice.

 $[3 \times 8 = 24]$

9. (a) Draw and explain the block diagram for IoT system.

[OR]

- (b) Write briefly about Strings, Lists and Type Conversions.
- 10.(a) Write briefly about the functional architecture design for IoT platform.

[OR]

- (b) Explain in detail about Control Flow.
- 11. (a) What is NET CONF YANG? Explain IoT system management with NET CONF YANG.

[OR]

(b) Describe briefly about the types of data that can be connected between IoT devices?

Nizam College (Autonomous) Faculty of Science

B.SC. V- Semester Examinations, January - 2023

Computer Hardware : Paper – V (VHDL)

Time: 3 Hours

Max. Marks: 80

Section - A

I. Answer any EIGHT of the following questions.

 $[8 \times 4 = 32]$

- 1. Mention some of the differences between HDL and other software languages.
- 2. Write about identifiers and data objects.
- 3. Explain configuration statement.
- 4. Write about delta delays.
- 5. Explain conditional signal assignment statement.
- 6. Write about direct instantiation of component.
- 7. Write about functions with examples.
- 8. Mention differences between library and user clauses.
- 9. Write about attributes.
- 10. Explain modeling entity interfaces.
- 11. Write a program to implement Half-adder.
- 12. Write a model for 3-bit decoder circuit.

Section - B

II. Answer the following questions using internal choice.

 $[4 \times 12 = 48]$

13. (a) Explain Behavioral modeling with an example?

[OR]

- (b) Explain the process and sequential statements with examples?
- 14. (a) Explain Data flow modeling with an example?

[OR]

- (b) Explain in detail component declaration and component instantiation with examples?
- 15. (a) Explain in detail about packages?

[OR]

- (b) Explain about PORTS and their behavior?
- 16. (a) Write a Test Bench for a Full-adder?

[OR]

(b) Explain modeling a clock driver?

Nizam College (Autonomous) Faculty of Science

B.SC. V-Semester Examinations, May - 2023

Computer Hardware: Paper – 5 (VHDL)

Time: 3 Hours

Max. Marks: 80

Section - A

I. Answer any EIGHT of the following questions.

 $[8 \times 4 = 32]$

- 1. Explain any four operators in VHDL?
- 2. Explain about transport delay model?
- 3. What are sequential statements?
- 4. Mention differences between concurrent and sequential assignment?
- 5. Explain about selected signal assignment?
- 6. Write about component declaration?
- 7. Mention differences between subprogram over loadings and operator over loadings?
- 8. Write about ports declaration in VHDL?
- 9. Explain design libraries?
- 10. Write a model for a stack?
- 11. Write a model for 4 input and Gate?
- 12. What is a Test Bench? What is its importance?

Section - B

II. Answer the following questions using internal choice.

 $[4 \times 12 = 48]$

13. (a) Give an overview of digital system design using VHDL.

IOR

- (b) Explain about entity declaration and Architecture body with examples.
- 14. (a) Write a program in structural style of modeling design 4 input MUX.

[OR]

- (b) Discuss styles of modeling.
- 15. (a) Explain function and procedures with simple examples.

[OR]

- (b) Explain in detail about libraries.
- 16. (a) Write a Test Bench for a full-adder.

IOR

(b) Explain modeling a pulse counter

Code No. 23D/540/NC/CHD

Nizam College (Autonomous) Faculty of Science B.Sc. V- Semester Examinations, December – 2023

Computer Hardware: Paper - 5 (VHDL)

Time: 3 Hours

Max. Marks: 80

SECTION - A

I. Answer any EIGHT of the following questions.

 $[8 \times 4 = 32]$

- 1. What is VHDL and how it is useful to you.
- 2. Write down scalers and operators in VHDL.
- 3. What is physical in VHDL? What is its significance.
- 4. Write down the syntax of Process statement. Where it is used?
- 5. What is signal assignment? Write its syntax.
- 6. What is delta delay? How it is useful?
- 7. What is the difference between concurrent and sequential statements.
- 8. What is component in VHDL? How can you define and use a component.
- 9. Explain the order of analysis.
- 10. Write a sample syntax for the package declaration and package body.
- 11. What is a Test Bench?
- 12. What are conditional operations?

SECTION - B

II. Answer the following questions

 $[4 \times 12 = 48]$

13. (a) Write Data objects in VHDL. Explain Access types.

[OR]

- (b) Explain Scaler types with examples.
- 14. (a) Explain different styles of modelling each with an example.

[OR]

- (b) Write a program to implement 4 bit Shift Register and its Test Bench.
- 15. (a) What is overloading? Explain the operator, subprogram overloading with syntax.

- (b) What are implicit visibility, Explicit visibilities?
- 16. (a) How a Testbench is used in a simulation? Explain with a 1 to 4 decoder example.

(b) Write a program to implement and test a 4-Bit binary counter.

NIZAM COLLEGE (AUTONOMOUS) FACULTY OF SCIENCE

B.SC. VI- SEMESTER EXAMINATIONS, MAY – 2023

COMPUTER HARDWARE : PAPER - 6 (COMPUTER HARDWARE-II)

TIME: 3 HOURS

MAX. MARKS: 80

<u>SECTION – A</u>

L. Answer any EIGHT of the following questions.

 $[8 \times 4 = 32]$

- 1. Write a short notes on USB.
- 2. Mention the IEEE1394 standards and 1394a technical details.
- 3. Explain about 101-keboard.
- 4. Mention different types of broadband internet access types.
- 5. Write about major types of DSL (Digital subscription line).
- 6. Mention different types of networks.
- 7. Write a short notes on negative DC voltage.
- 8. Explain about front panel motherboard-controls.
- 9. Write a short notes on solid state drives.
- 10. Mention different types of diagnostics software for PC's.
- 11. Write about power-line noise.
- 12. Write any four troubleshooting problems.

SECTION - B

. Answer the following questions using internal choice.

 $[4 \times 12 = 48]$

13.(a) Explain about Serial and parallel ports.

[OR]

- (b) In detail explain about different types of pointing devices.
- 14. (a) Explain about routers and Switches.

[OR]

- (b) Write about client and peer to peer networks.
- 15. (a) Explain the Block diagram of computer SMPS.

[OR]

- (b) How the installation of the CPU and heatsink is done explain.
- 16.(a) Write about different test equipments required for PC.

[OR]

(b) How the hardware boot process is done explain.
